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Stability of equilibrium states for ferroelectric smectic-C* liquid crystals
in finite and infinite samples

D. A. Anderson and I. W. Stewart
Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United King

~Received 9 November 1999; revised manuscript received 2 May 2000!

The aim of this article is to establish some theoretical linear and nonlinear stability results for a dynamic
equation that frequently appears in the smectic-C and ferroelectric smectic-C* liquid crystal literature. We
consider finite planar samples confined between bounding plates as well as infinite samples. Many of the
results depend on extensions of work for a nonlinear diffusion equation. Critical maximum magnitudes of
applied static electric fields are determined, below which stability of a certain constant equilibrium state is
ensured.

PACS number~s!: 61.30.Cz
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I. INTRODUCTION

Many physical and biological processes are modeled w
by nonlinear reaction-diffusion equations of the form

ut5uxx1 f ~u!, xPD, t.0, ~1.1!

where D is some domain, possibly infinite. Full nonline
problems are often analytically intractable and for this rea
approximations to more complicated nonlinearities inf (u)
are frequently adopted, for example, by cubic nonlinearit
Having made a cubic approximation and the relevant res
ings, one often obtains Nagumo-like equations such as@1#

ut5uxx1u~12u!~u2a!, xPD, t.0, 0,a,1.
~1.2!

The model equation to be considered, which arises fr
smectic liquid crystal theory, is of the form

ut5uxx1a sin~2u!1b cos~u!, ~1.3!

where a and b are constants~see, among others,@2#, for
example!. The nonlinear terms in Eq.~1.3! are related to
those of the double sine-Gordon equation and a Pain´
analysis of this equation witha any real constant andb.0
has recently been made in@3#. However, it should be pointed
out that there is only a first order time derivative in Eq.~1.3!
whereas the usual sine-Gordon type of equation gene
has a second order time derivative. Flores@4# considered the
equation~1.2! on an infinite domain, and states that, by r
stricting the initial profile, the time dependent nonlinear s
lution must decay to zero, thereby showing that the z
equilibrium state is nonlinearly stable. The results from@4#
are reviewed so that the techniques applied to cubic non
earities in Eq.~1.2! can be suitably extended to cover th
sinusoidal terms as they occur in Eq.~1.3!.

After deriving the relevant dynamic equations for
sample of smectic-C* liquid crystal in Sec. II we shall dis-
cuss results in Sec. III that are used to obtain decay pro
ties for perturbations to Eq.~1.3! that will be used later. The
main tool used in proving these decay results is the comp
son principle@5–8#, which is used to obtaina priori bounds
on the solution. On obtaining these bounds we can then s
PRE 621063-651X/2000/62~4!/5043~13!/$15.00
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that theL2 norm of the solution decays to zero in time. F
completeness we introduce the comparison principle in S
III A. In Sec. III B we review in detail Flores’ result on an
infinite domain inx, before considering in Sec. III C wha
happens in a finite domain.

The results introduced in Sec. III motivate the style
analysis that will be employed for the liquid crystal problem
we investigate in Sec. IV. There we consider a sample
ferroelectric smectic-C* liquid crystal where a static electri
field is applied parallel to the smectic layers. We then ap
the methods introduced in Sec. III to obtain information
the stability of the equilibrium stateu5p/2 in Eq. ~1.3!.
Tables I and II in Sec. IV show the stability regimes invol
ing the electric field that are obtained using this method.
obtain a sinusoidal nonlinearity inf (u) which arises in the
equation obtained by applying a perturbation, in both sp
and time, to the equilibrium solution to the dynamic equati
derived from the nonlinear continuum theory. Finally, w
shall obtain suitable restrictions on the initial data of t
perturbation for the linear and nonlinear stability of thep/2
state of a suitable dynamic equation discussed below,
both infinite and finite domains. Section V contains a disc
sion of these results and relates the decay properties obta
to the characteristic timest.

II. GOVERNING EQUATIONS

Liquid crystals are anisotropic fluids consisting of elo
gated molecules where the long molecular axes locally g
rise to a preferred common direction in space, which is u
ally described by the unit vectorn, called the director. Ferro
electric smectic-C* liquid crystals are chiral layered struc
tures possessing a polarization where the directorn is tilted
at an angleu to the layer normal. We shall assume here th
the ~temperature dependent! smectic tilt angleu is some
fixed constant, and hence the layers are assumed to b
constant thickness. Having fixedu, the director is now con-
strained to rotate around the surface of a fictitious cone.
this reason the smectic tiltu is often called the cone angle

Following the description by de Gennes and Prost@9#, the
orientation of the smectic layers is described by a unit la
normala and a vectorc, which is the unit orthogonal projec
tion of n onto the smectic planes. The direction of the vec
5043 ©2000 The American Physical Society
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c is described by the anglef which is measured, in the
positive sense, relative to thex axis as shown in Fig. 1~no-
tice thatc always lies parallel to the smectic planes!. Ferro-
electric liquid crystals also possess a spontaneous pola
tion P which is assumed locally normal to bothn anda.

The application of an external field to a sample of fer
electric liquid crystal is known to influence the orientation
the directorn, and hence ofa andc @9#. We shall now use the
continuum theory of Leslie and co-workers@10,11# to obtain
the dynamic equation involvingf5f(z,t) for a planar
sample of smectic-C* liquid crystal aligned as in Fig. 1
when an external electric field is applied parallel to the sm
tic layers in thex direction.

It follows that since the layer normala and the vectorc
are unit and orthogonal to each other they must satisfy
constraints

a•a5c•c51, a•c50. ~2.1!

Since the system that we are considering has constant
thickness with no dislocations, the layer normal must a
satisfy @12#

“3a50. ~2.2!

For convenience we introduce the vectorb defined by

b5a3c, ~2.3!

since the polarizationP is in the direction ofb. Further, the
directorn can be expressed in terms ofa andc as

n5acosu1csinu. ~2.4!

The dynamic theory of Leslie, Stewart, and Nakagawa@10#
involves the construction of a bulk energy integrand invo
ing thea andc directors. In thea,c formulation, the relevant
nonchiral contribution to the bulk energy is@11#

2Fbulk5A21~“•a!21B1~a•“3c!21B2~“•c!2

1B3~c•“3c!21~2A111A121A211B3!~b•“3c!2

2~2A1112A211B3!~“•a!~b•“3c!

22B13~a•“3c!~c•“3c!12~C11C22B13!

3~“•c!~b•“3c!22C2~“•a!~“•c!, ~2.5!

where theAi , Bi , andCi are elastic constants. A physic
interpretation of these constants and their related defor
tions is given by Carlsson, Stewart, and Leslie@13#. It is
known that the elastic constantsA12, A21, B1 , B2 , andB3
are strictly positive while bounds on the remaining four co
stants can be derived in terms of these five basic consta
Details can be found in@13# and @14#.

Also, since this bulk energy integrand does not take i
account the chiral nature of a ferroelectric liquid crystal,
must introduce an additional bulk energy density, which m
be expressed, in theb,c formulation, as@15#

Fchiral5
1
2 L~b•“3b1c•“3c!1t~c•“3c2b•“3b!,

~2.6!

52 1
2 Lbici , jaj2tbiai , j cj , ~2.7!
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whereL andt are chiral elastic constants and the latter e
pressions are in Cartesian component form with repeated
dices following the summation convention.

We must also incorporate a term in the energy integra
due to the dielectricity of the smectic-C* phase. This extra
term is @@9#, p. 134#

Felec52 1
2 «a«0~n•E!2, ~2.8!

where«0 is the permitivity of free space and«a is the di-
electric anisotropy of the liquid crystal. A positive dielectr
anisotropy indicates that the director prefers to align para
to the applied field while a negative dielectric anisotro
indicates that the director prefers to orient itself perpendi
lar to the field. The interaction of the electric field and t
spontaneous polarization of the smectic-C* phase further re-
sults in an additional contribution to the energy integrand

Fpol52P•E52Pb•E. ~2.9!

Here we adopt the sign convention, as introduced in@@9#, pp.
380, 385#, that P.0 if the polarization is in theb direction.

The total energy integrand can therefore be written as

F5Fbulk1Fchiral1Felec1Fpol . ~2.10!

Thus the total energy integral over a sample volumeV is

F5E
V
F dV. ~2.11!

The relevant dynamic equations in the absence of bulk fl
are @10#

PF
a1ga1la1mc1“3b50 ~2.12!

and

PF
c 1gc1ma1xc50, ~2.13!

with, in Cartesian component form,

gi
a522t5ċi , gi

c522l5ċi , ~2.14!

FIG. 1. The geometry of the problem under consideration. T
directorn makes an angleu with the layer normala with c being the
unit orthogonal projection ofn onto the smectic planes, which li
parallel to thexy plane. Thez axis coincides with the orientation o
the layer normal. The phase angle of the directorc is denoted byf.
The static electric fieldE is applied parallel to the layers in thex
direction andP, the spontaneous polarization induced by the el
tric field, is parallel tob5a3c.
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wheret5 andl5 are viscosity coefficients~l5.0 is known
to be the rotational viscosity coefficient related to the mo
ment of the directorn around the fictitious cone!. The
Lagrange multipliersl, m, x, andb arise from the four con-
straints in Eqs.~2.1! and ~2.2!. The vectorsPF

a and PF
c in

Eqs.~2.12! and ~2.13! are defined by

$PF
a% i5H ]F

]ai , j
J

, j

2
]F

]ai
~2.15!

and

$PF
c % i5H ]F

]ci , j
J

, j

2
]F

]ci
. ~2.16!

Introducing the ansatz

a5~0,0,1!, ~2.17!

c5~cosf, sinf,0!, ~2.18!

and

E5~E,0,0!, ~2.19!

we obtain, eliminating the Lagrange multipliers in Eq
~2.12! and~2.13! in a similar fashion to that contained in th
Appendix in@16#, the governing equation for the phase ang
f,

2l5

]f

]t
2B3

]2f

]z2 1E2«a«0 sin2~u!sinf cosf1PE cosf

50, ~2.20!

which describes the realignment of the director. Thus,
rescaling Eq.~2.20!, we obtain the dynamic equation

fT5fZZ2A sinf cosf2B cosf, ~2.21!

where we have introduced the constants
ly

al
in
s
t

-

.

n

A5E2«a«0 sin2~u!, B5PE, ~2.22!

and the rescaled variables

T5
1

2l5
t, ~2.23!

and

Z5
1

AB3

z. ~2.24!

Equation~2.21! is similar to the form of the governing equa
tion used by Maclennan, Clark, and Handschy@17# and is
known to arise in the modeling of surface stabilized fer
electric liquid crystal devices. However, in@17#, alignment is
described in an equivalent way in terms ofa and P rather
than a and c. The direction of the polarizationP is then
described by a phase angle which is measured in the s
sense asf introduced above but with a phase shift ofp/2
~see Fig. 1!. We choose to work in terms off defined in Fig.
1 since it sets the problem in a slightly more general sett
and therefore allows comparisons to be drawn with ot
work in Refs.@3,16–21# ~see especially the Appendix of@3#!.

At this point it is instructive to highlight the role of the
electric potential in relation to the critical field magnitud
which will be calculated and discussed below, especiallyEc
given by Eq.~4.13!. Using the above definitions for the vec
tors in Eqs.~2.3!, ~2.4!, ~2.17!, ~2.18!, and ~2.19!, we can
consider a sequence of qualitative plots for the combin
electric potentialu(f) for Eqs.~2.8! and ~2.9! given by

u~f!5Felec1Fpol52 1
2 «a«0E2 sin2~u!cos2 f1PE sinf,

~2.25!

keeping«a , «0 , u, andP fixed. For convenience, introduc
the constant

E* 5
P

u«au«0 sin2~u!
. ~2.26!

Elementary calculations reveal that there are either two
three real turning points foru(f), namely,
f5H p

2
,
3p

2
whenever uEu<E*

p

2
,
3p

2
,arcsinS 2P

E«a«0 sin2~u! D whenever uEu.E* .

~2.27!
ns
It

n a
nd
The nature ofu(f) is demonstrated in Fig. 2. There is on
one local minimum atf53p/2 for E<E* while if E.E*
there are two local minima atp/2 and arcsin@2P/
E«a «0 sin2(u)#, both giving equal values for the potenti
u(f): thus the system is expected to change from hav
one possible stable state to having two possible state
equal potential, that is, forE.E* the system can exhibi
g
of

bistability. The relationship and consequences ofE* in Eq.
~2.26! upon the stability of solutions to dynamic equatio
such as Eq.~2.20! are discussed in detail in Sec. IV below.
should also be noted that Eq.~2.20! may also be obtained by
considering a balance of elastic and electric torques, i
similar way to the analysis carried out by Schiller, Pelzl, a
Demus@20#.
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III. COMPARISON PRINCIPLES AND PRELIMINARY
RESULTS ON CUBIC NONLINEARITIES

In this section we state and review key results that
exploited in the subsequent sections.

A. Comparison principles

The main tools we shall use involve comparison pr
ciples for partial differential equations. Hence for clarity
exposition and convenience we briefly summarize in t
section the comparison principle for both finite and infin
domains. We begin by considering the differential equati

v t5vxx1g~v,x,t !, xPV, t.0, ~3.1!

whereV can be either the whole, or a strict subset, ofR, and
g is assumed to be continuously differentiable. We summ
rize the basic results on the comparison principle~see, for
example,@@5#, pp. 54–56#!.

A supersolutionis a functionv̄: V3@0,T#→B, for some
bounded subsetB of R, such that

v̄ t> v̄xx1g~ v̄,x,t !. ~3.2!

Similarly, a subsolutionvI is a functionvI : V3@0,T#→B,
and

vI t<vI xx1g~vI ,x,t !. ~3.3!

Now suppose that initially we have

v̄~x,0!>vI ~x,0!. ~3.4!

If V is an infinite domain, for example,V[R, then we have
that the super- and subsolutions satisfy

v̄~x,t !>vI ~x,t !, xPV, tP@0,T#. ~3.5!

FIG. 2. Qualitative plots of the total electric potentialu(f) in
Eq. ~2.25! as a function of the phase anglef. When E<E* the
potential exhibits one local minimum atf53p/2. However, ifE
.E* given by Eq.~2.26! then the minimum atf53p/2 becomes a
maximum and two new minima appear atp/2 and
arcsin@2P/E«a«0 sin2(u)#, which possess equal potential value
showing that the system can exhibit bistability.
e

-

s

-

If, however,V is a bounded subset ofR, then we must also
impose an extra condition which takes into consideration
behavior of the solution at the boundary. Hence, we m
also determine if there exist constantsa,b (a21b2Þ0)
such that

a v̄2b v̄xx>avI 2bvI xx , xP]V, t.0. ~3.6!

Thus, on a finite domain, ifv̄ andvI are super-and subsolu
tions, respectively, satisfying condition~3.4! and the condi-
tion on the boundary~3.6!, then

v̄~x,t !>vI ~x,t !, xPV, tP@0,T#. ~3.7!

B. The cubic nonlinearity on an infinite domain

We shall now, as was discussed in@4#, investigate the
stability of the zero equilibrium solution to a dynamic equ
tion that has a cubic nonlinearity. We begin by consider
the simpler cubic nonlinearity case, before moving on
consider a more complicated sinusoidal nonlinearity in S
IV, in order to obtain explicit decay properties that we sh
use in Sec. IV.

The stability analysis that we consider here involves
troducing a perturbationu0(x) at time t50 and examining
the ensuing time dependent behavior. We begin, as in@4#, by
considering the Nagumo equation on an infinite domain,

ut5uxx1u~12u!~u2a!, xPD, t.0, 0,a,1,
~3.8!

u~x,0!5u0~x!PH1, ~3.9!

where, for our purposes,a is a constant,u0(x) is a non-
negative initial profile, andH1 is the usual Hilbert space o
functions that, with their first derivatives, belong to the spa
of real square integrable functionsL2(R). By the Sobolev
embedding theorem, this also implies thatu0PCB(R), the
space of continuous bounded functions~see, for example,
@@22#, pp. 95–97#!.

Local existence is guaranteed by standard Lipschitz ar
ments~see, for example,@@5#, p. 46#!; therefore there exists
u(x,t) on R3@0,T# for someT.0. The time dependent so
lution u(x,t) is also therefore restricted to lie in the functio
spaceH1 for tP@0,T#.

Let uc(x,t) be such a solution to Eq.~3.8! satisfying

uc~x,0!5cu0~x!, ~3.10!

wherec is some positive constant. It is possible to choosc
small enough so that

cu0~x!<a0,a, xPR, ~3.11!

where a0 is any positive constant strictly less thana. We
now wish to apply a comparison principle, to obtain low
and upper bounds on the solutionuc(x,t).

Let

ū~x,t !5a0 ~3.12!

and

u~x,t !5uc~x,t !. ~3.13!

,
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Upon substituting Eqs.~3.12! and ~3.13! into Eq. ~3.8!, we
obtain the inequalities

ūt>ūxx1ū~12ū!~ ū2a!, xPR, tP@0,T#,
~3.14!

and

ut<uxx1u~12u!~u2a!, xPR, tP@0,T#.
~3.15!

Thus ū(x,t) anduI (x,t) are super- and subsolutions, respe
tively. Note that equality actually holds in Eq.~3.15!. Since
we are dealing with an infinite domain, all that remains is
show that the super- and subsolutions satisfy the inequal
in Eq. ~3.11! for xPR at t50, so that the correspondin
inequality ~3.4! holds. Consideration of these initial stat
reveals that, by the judicious choice of the constantc in Eq.
~3.7!,

ū~x,0!5a0>cu0~x!5uI ~x,0!. ~3.16!

Hence, it follows by the comparison principle in Sec. III
that

a05ū~x,t !>u~x,t !5uc~x,t !, xPR, tP@0,T#.
~3.17!

However, since~3.14! and ~3.15! hold for any T.0, Eq.
~3.17! can be extended to hold globally@@5#, p. 55#, that is,

uc~x,t !<a0 , xPR, t.0. ~3.18!

If we now choose

ū~x,t !5uc~x,t ! ~3.19!

and

u~x,t !50, ~3.20!

it is possible to bound the solutionuc(x,t) below, for all
time, by zero by a similar application of the comparis
principle. Thus we have obtained the bounds

0<uc~x,t !<a0,a,1, xPR, tP@0,̀ !, ~3.21!

indicating that our solutionuc(x,t) must be non-negative.
More qualitative information onuc(x,t) can be obtained

by employing the techniques of Flores@4#. It follows that,
since our solutionuc is bounded above bya0 ,

~12uc!~uc2a!<~12a0!~a02a!, xPR, t.0,
~3.22!

and thus the nonlinear term in~3.8! satisfies

uc~12uc!~uc2a!<2kuc , ~3.23!

wherek is the positive constant

k5~12a0!~a2a0!. ~3.24!

It follows from ~3.23! that
-

es

]uc

]t
5

]2uc

]x2 2kuc>
]2uc

]x2 1uc~12uc!~uc2a!,

xPR, t.0, ~3.25!

and hence the solution to

Ut5Uxx2kU, xPR, t.0,

U~x,0!5Cu0~x!, ~3.26!

where C>c, must be a supersolution, by the definition
Sec. III A. Equation~3.26! can be reduced to the canonic
heat equation by making the substitution

h~x,t !5U~x,t !ekt, ~3.27!

and so

h t5hxx ,

h~x,0!5U~x,0!5Cu0~x!. ~3.28!

Equation~3.28! has the well known solution

h~x,t !5CE
2`

`

K~x2y,t !u0~y!dy, ~3.29!

where

K~x,t !5
1

A4pt
expS 2x2

4t D ~3.30!

is the usual fundamental solution to the heat equation@23#.
Thus we have

U~x,t !5
Ce2kt

A4pt
E

2`

`

expS 2~x2y!2

4t Du0~y!dy,

~3.31!

which is a supersolution. Hence, choosinguc(x,t) as a sub-
solution, we can bound our solution above byU(x,t), pro-
vided these super- and subsolutions have the correct be
ior at t50.

On the boundaryxPR, t50, we have that

U~x,0!5Cu0~x!>cu0~x!5uc~x,0!, ~3.32!

and thus we can apply the comparison principle to obtain

U~x,t !>uc~x,t !, xPR, t.0,

that is, we can now bound our non-negative solution ab
by a function that exhibits an exploitable time dependen
namely,

uc~x,t !<
Ce2kt

A4pt
E

2`

`

expS 2~x2y!2

4t Du0~y!dy.

~3.33!

Having obtained this upper bound on the solutionuc(x,t),
we now consider theL2 norm ofuc(x,t). Since we have seen
from Eq. ~3.21! that uc(x,t) is non-negative, it then follows
that, if theL2 norm of the solution decreases in time, the ze
state is nonlinearly stable to initial perturbations satisfyi
Eq. ~3.11!. TheL2 norm of uc(x,t) is defined to be
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5048 PRE 62D. A. ANDERSON AND I. W. STEWART
iuc~x,t !iL2

2 5E
2`

`

uc
2~x,t !dx, t.0, ~3.34!

and thus, on using~3.33!, we obtain

iuc~ t !iL2

2 <e2ktE
2`

`

uc~x,t !c~x,t !dx, ~3.35!

where

c~x,t !5CE
2`

`

K~x2y,t !u0~y!dy. ~3.36!

Hence~3.35! implies that

iuc~ t !iL2

4 <e22ktS E
2`

`

uc~x,t !c~x,t !dxD 2

. ~3.37!

We now state a standard result from@@24#, p. 528# that we
shall require. Iff PL1 andgPL2 then we have that the con
volution

h5E
2`

`

f ~x2y!g~y!dyPL2 and ihiL2
<igiL2

i f iL1
.

~3.38!

Now consider the convolution

E
2`

` 1

A4pt
expS 2~x2y!2

4t DCu0~y!dy. ~3.39!

By assumption we have thatCu0(x) is square integrable on
R and it is clear thatK(x,t) in Eq. ~3.30! is integrable onR
for t.0. Thus, applying the result in Eq.~3.38!, we find that
the convolution in Eq.~3.39! must be square integrable.

Knowing that the integral in~3.39! is an L2 function,
which shows thatuc(x,t)c(x,t) is anL1 function, now en-
ables us to apply the well known Cauchy-Schwartz inequ
ity to the integral within the large parentheses in Eq.~3.37!,
showing that

S E
2`

`

@uc~x,t !c~x,t !#dxD 2

<E
2`

`

uc
2~x,t !dxE

2`

`

c2~x,t !dx

5iuciL2

2 E
2`

`

c2~x,t !dx. ~3.40!

Since we have thatK(x,t) is integrable andu0(x) is square
integrable, we have, on applying the result in Eq.~3.38! to
c(x,t), that

E
2`

`

c2~x,t !dx<C2E
2`

`

u0
2~x!dxE

2`

`

K~x,t !dx,

~3.41!

which, on noting~see, for example,@@23#, p. 34#! that for t
.0 the fundamental solution satisfies

E
2`

`

K~x,t !dx51, ~3.42!
l-

reveals that

E
2`

`

c2~x,t !dx<C2iu0iL2

2 . ~3.43!

Thus, combining inequalities~3.37!, ~3.40!, and ~3.43! we
have that

iuc~x,t !iL2

4 <C2iuc~x,t !iL2

2 iu0~x!iL2

2 e22kt,

which implies

iuc~x,t !iL2
<Me2kt, ~3.44!

where

M5Ciu0iL2
,`. ~3.45!

Thus, we see from inequalities~3.44! and~3.45! that a solu-
tion corresponding to small initial data collapses, that is,
zero state solution to Eq.~3.8!, is nonlinearly stable to any
positive initial perturbations inH1 satisfying~3.11!.

C. The cubic nonlinearity on a finite interval

Having considered data collapse for the Nagumo equa
~3.8! on an infinite domain, we now consider the possibil
of data collapse in a finite domainD. In particular, we con-
sider a finite closed intervalD in x: this corresponds to the
usual ‘‘bookshelf geometry.’’

A general stability result for equations of the form of E
~1.1! can be found in@@25#, p. 158#. In @25# the stability
result depends uponf (u) satisfying certain given properties
If these restrictions are satisfied, this result guarantees
existence of a finite constant such that if theL2 norm of the
initial profile of u is less than or equal to this constant, t
solution decays exponentially in the more restrictive sp
H0

1ùC0 . Moreover, a bound upon the decay time, whi
involves the first eigenvalue of the Laplacian, is obtain
This result can be used to show that, providing certain
strictions hold, the solution will always decay to zero. Ho
ever, no information can be found on the maximum mag
tude of the initial profile for which stability will hold. Also,
there is no relation between the relaxation time and the m
nitude of the initial profile. For this reason we choose
analyze the finite case in a similar way to that considered
the infinite case in order to obtain more detailed behavior
the decay properties. As in the infinite case, we consider
solutionuc(x,t) that satisfies Eq.~3.10!. Since we are inter-
ested here in the stability of the zero state, we also imp
the extra restriction thatu0(x), and thusuc(x,t), vanishes on
the boundary.

Analogous to the infinite case we now choosec small
enough so that

cu0~x!<a0,a, xPD. ~3.46!

We now wish to use the comparison principle on a fin
domain to obtain upper and lower bounds on the solution
follows from the comparison principle that, if the sub- an
supersolutions used in the infinite domain case are cho
here to obtain upper and lower bounds on the solut
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uc(x,t), then these sub- and supersolutions must also sa
the required boundary conditions~3.6!.

First, we consider

ū~x,t !5a0 ~3.47!

and

uI ~x,t !5uc~x,t !, ~3.48!

with, as before,uc being any solution to~3.8! satisfying
uc(x,0)5cu0(x) on D. On the boundary ofD we have that

ū5a0>05uI 5uc~x,t !, xP]D, t.0. ~3.49!

Hence it follows that, since we have already seen in
infinite case that these choices ofū and uI are super- and
subsolutions, respectively, satisfying the requirementst
50 for the comparison principle, we can now apply the
nite version of the comparison principle to obtain@incorpo-
rating the additional conditions on]D in Eq. ~3.6!#

uc~x,t !<a0 , xPD, t.0. ~3.50!

We are able to extend this bound for all time sinceū anduI
are super- and subsolutions for allt.0. We now consider the
choice of

ū5uc~x,t ! ~3.51!

and

uI 50. ~3.52!

On ]D we have that

ū50>05uI . ~3.53!

Thus we have by the finite comparison principle

0<uc~x,t !, xPD, t.0. ~3.54!

Combining~3.50! and ~3.54!, yields

0<uc~x,t !<a0 , xPD, t.0. ~3.55!

Having bounded our solution above bya0 , it again follows
that we can bound the nonlinearity in Eq.~3.8!. Indeed, the
bound given in~3.23! holds and this leads us to conclude th
the solution to

Ut5Uxx2kU, xPD, t.0 ~3.56!

is a supersolution. As in the infinite case, we again red
Eq. ~3.56! to the heat equation in terms ofh by using the
substitution~3.27!. However, the solution to the heat equ
tion on a finite domain is now given in terms of an infini
series~see, for example,@@23#, p. 43#!. On making the sub-
stitution ~3.27!, Eq. ~3.56! is reduced to the canonical he
equation~3.28!, where without loss of generality we assum
that xP@0,d#, where d is the depth of the given sample
Introducing the rescaled variables

X5
x

d
~3.57!
fy

e

-

t

e

and

T5
t

d2 , ~3.58!

we have that

h5 (
n51

`

An exp@2~np!2T#sin~npX!, ~3.59!

where

An52E
0

1

Cu0~X!sin~npX!dX, n51,2,3, . . . .

~3.60!

It therefore follows that, on combining Eqs.~3.27! and
~3.59!, we obtain

uc~x,t !<exp~2kt! (
n51

`

An expS 2
~np!2t

d2 D sinS npx

d D .

~3.61!

Since u0(x) and sin(npx/d) are bounded, we have tha
each of theAn are also bounded; in fact

22Ca0<An<2Ca0 , n51,2,3, . . . . ~3.62!

At t50 the Fourier series satisfies

uc~x,0!< (
n51

`

An sinS ~npx!

d D5cu0~x!<ca0 , ~3.63!

while for t.0, upon using the upper bound on theAn given
in ~3.62!,

uc~x,t !<2a0C exp$2kt% (
n51

`

expH 2
$np%2t

d2 J .

~3.64!

By applying the usual ratio test we have that the infinite s
on the right hand side of~3.64! is convergent to a finite limit,
L(t) say. Thus, fort.t1 where t1 is some fixed positive
constant, we have that

uc~x,t !<M1 exp~2kt!, t.t1 , ~3.65!

whereM1 is a uniform bound on the above sum that hol
for t>t1.0, namely,

M152a0CL~ t1!. ~3.66!

Having bounded our function uniformly fort>t1 by Eq.
~3.66! it follows, from continuity in t, that uc(x,t) is
bounded on@0,t1#, by some constantM2 . Let

M5max~M1 ,M2!. ~3.67!

Then, taking theL2 norm of uc(x,t), we have

iuc~x,t !iL2

2 <E
0

d

M2 exp~22kt!dx5~Md!2 exp~22kt!,

~3.68!
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which implies that

iuc~x,t !iL2
<M̄ exp~2kt!, t>0, ~3.69!

where M̄5Md. Hence, since from~3.55! uc(x,t) is non-
negative, we have that on a finite interval inx, solutions with
small enough initial profiles collapse to zero. Therefore, a
the infinite domain case, the zero equilibrium solution
nonlinearly stable to initial perturbations satisfying~3.46!.
We notice here that the decay rate found from~3.69! is not
related to the sample depth.

IV. STABILITY FOR FERROELECTRIC SMECTIC- C*
LIQUID CRYSTALS

Having reviewed and developed the analytic technique
Secs. III B and III C to deduce whether or not solutions
diffusion equations with cubic nonlinearities collapse to ze
and, if they do, what their decay rate is like, we now consi
applying these methods to a more complicated case when
diffusion equation has a sinusoidal nonlinearity. The sin
soidal nonlinearity to be considered is obtained from app
ing a perturbation analysis to one of the constant equilibri
states of the dynamic equation derived in Sec. II for fer
electric smectic-C* liquid crystals. This sinusoidal nonlin
earity must be considered separately from the cubic case
Secs. III B and III C as it is not possible to reduce Eq.~2.21!
to the form of Eq.~3.8! via a substitution.

In this particular case where the static field is only be
considered applied parallel to the smectic layers, the te
niques that we employ cannot be applied to the noncons
equilibrium states. In such cases, the nonlinearity obtaine
the perturbation equation, which depends not only upon
perturbation but also upon the equilibrium state, cannot
isfy the bounds that are required to enable the applicatio
the comparison principles of Sec. III A. We therefore co
sider only the stability of the constant equilibrium solutio
p/2 to Eq.~2.20!.

As derived in Eqs.~2.21!–~2.24!, the governing equation
for a sample of smectic-C* liquid crystal with an electric
field applied parallel to the layers is given by

fT5fZZ2A sinf cosf2B cosf, ZPD, T.0,

f~Z,0!5f0~Z!, ~4.1!

whereD can be either finite or infinite.
Before applying the methods introduced in Secs. III B a

III C to obtain stability results for the above problem w
must first of all define what is meant by an equilibrium sta
f̂(Z) being stable. We first introduce a perturbationw(Z,T),
in both space and time, satisfying@5,7#

f~Z,T!5f̂~Z!1w~Z,T! ~4.2!

~see Fig. 3!. The equilibrium statef̂(z) is then defined to be
stable if

iw~Z,T!iL2
→0 as T→`. ~4.3!

Thus on substituting Eq.~4.2! with f̂5p/2 into Eq.~4.1! we
obtain the nonlinear dynamic equation forw, namely,
n
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d

wT5wZZ1A cos~w!sin~w!1B sin~w!, ~4.4!

w~Z,0!5w0~Z!PH1, ~4.5!

which governs the growth of the perturbationw(Z,T). We
shall consider two types of stability here. The first type
stability to be examined is linear stability. For linear stabili
we assume that the perturbationw(Z,T) is small and it is
therefore possible to linearize the nonlinearity in Eq.~4.4!.
We then consider conditions for the solution of this linea
ized equation to decay. Secondly, we will consider the s
bility of the solution to the fully nonlinear problem~4.4! and
obtain restrictions on the strength of the applied static fi
for stability to hold.

Since the cubic nonlinearity

q~u!5u~12u!~u2a! ~4.6!

in Secs. III B and III C becomes negatively unbounded
are required to assume, in order to obtain a negative lo
bound onf (u) as in@4#, that the initial profileu0(x) is non-
negative. In the present problem, the nonlinearity on the ri
hand side of Eq.~4.4! involving the perturbationw(Z,T)
remains bounded for all values ofw(Z,T). It is not possible,
however, due to the behavior of the nonlinearity aroundw
50 on the right hand side of Eq.~4.4!, to obtain a uniform
negative lower bound on the nonlinearity for bothw,0 and
w.0. We cannot therefore consider perturbationsw that
change sign. We shall discuss below the case whenw is
non-negative with the case forw,0 being similar. This
work is analogous to a first eigenmode approximation.

A. Linear stability

Assuming thatw(Z,T) is small and linearizing the non
linearity in Eq. ~4.4!, we obtain the linearized perturbatio
problem

wT5wZZ1~A1B!w, ~4.7!

with A andB given by Eq.~2.22!. By making the substitution

h~Z,T!5exp~2@A1B#T!w~Z,T!, ~4.8!

it is now possible to reduce Eq.~4.7! to the heat equation

hT5hZZ ,

h~Z,0!5w0~Z!. ~4.9!

FIG. 3. Schematic of a possible perturbation on a finite dom
@0,d#.
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Case (i): Infinite domain

We first consider the infinite domain problem. Equati
~4.9! on the infinite domain has a solution similar to~3.31!.
Thus

w~Z,T!5exp~@A1B#T!E
2`

` 1

A4pT

3expS 2~Z2y!2

4T Dw0~y!dy. ~4.10!

Applying the arguments introduced in the infinite cubic ca
in Sec. III B it is now possible to bound our solution@cf.
~3.44!#, to obtain

iwiL2
<M exp~@A1B#T!, ~4.11!

whereM is a finite constant. We see from Eq.~4.11! that the
growth of the perturbationw and hence the stability of th
solutionf(Z,T) are dependent upon the sign of

A1B5E~P1E«a«0 sin2 u!. ~4.12!

Therefore it follows that for thef5p/2 state to be stable
A1B must be negative. The positivity or negativity of th
right hand side of Eq.~4.12!, and therefore the stability o
the p/2 equilibrium state, are dependent upon the positiv
of E, P, and«a . A maximum critical magnitude of the ap
plied static fieldEc can be calculated by solving the qu
dratic for E in Eq. ~4.12!. Doing so yields a critical field
strength parameter

Ec5
2P

«a«0 sin2 u
. ~4.13!

The ranges ofE, for the various signs that the parametersE,
P, and«a can take, for which linear stability is guarantee
are shown in Tables I and II@obtained by using Eq.~4.12!#.
The method therefore yields sufficient conditions on
strength of the applied static field for linear stability to ho
It should be noted that, roughly speaking, if one consid

TABLE I. Ranges of stability forE.0 in the infinite case where
Ec is given by Eq.~4.13!, «a is the dielectric anisotropy of the
liquid crystal, andP is the spontaneous polarization.

P
«a 1 2

1 method fails 0,E,Ec

2 E.Ec E.0

TABLE II. Ranges of stability forE,0 ~E,0 corresponds to
reversing the field! in the infinite case whereEc is given by Eq.
~4.13!; «a andP are as in Table I.

P
«a 1 2

1 Ec,E,0 method fails
2 E,0 E,Ec
e

y

e
.
s

only the balance of the ferroelectric and dielectric torques
Eq. ~2.20! then forf'p/2 we obtain the result in Eq.~4.13!.

Case (ii): Finite domain

On the finite intervalD Eq. ~4.9! has the solution given by
Eqs.~3.59! and~3.60! ~with x replaced byZ! and it therefore
follows that

w~Z,T!5exp~@A1B#T! (
n51

`

An sinS npZ

d̄
D

3expS 2~np!2T

d̄2 D , ~4.14!

whereD5@0,d̄# and d̄ is the rescaled depth of the sampl
that is,

d̄5
d

AB3

~4.15!

with d being the original sample depth@see Eq.~2.24!#.
Thereforep/2 is asymptotically exponentially stable if

expF S A1B2
~np!2

d̄2 D TG ~4.16!

decays with time. Hence we must consider the sign of

A1B2S np

d̄
D 2

. ~4.17!

Thus, for the finite case, we have linear stability provided

A1B2S np

d̄
D 2

,0, n51,2,3, . . . . ~4.18!

Notice that, unlike the infinite case, it is possible in the fin
case to have linear stability for certain positive values
(A1B). It follows from ~4.18! that if

A1B2S p

d̄
D 2

5E2«a«0 sin2 u1EP2S p

d̄
D 2

,0

~4.19!

then inequality~4.18! will necessarily be satisfied and linea
stability will be guaranteed. Thus, on solving~4.19! in terms
of E, we obtain the critical field strengths

E6
c 5

2P6PA124«a«0 sin2 up2/~Pd̄!2

2«a«0 sin2 u
, ~4.20!

whereE2
c is defined to be the critical field strength that

less thanE1
c ; notice thatE1

c andE2
c will change signs de-

pending upon the original signs of«a andP. The regions of
E for which we have linear stability are given in Tables I
and IV. We note that, on taking the limitd̄→` in the finite
critical field strength parameters,E6

c →Ec : we obtain the
infinite critical field strength parameter~4.13!. It should also



th
lib

f

b
a

m

m
n

q.

tr
ca

lie,

be

II B
not

any

t

ity
ld

in

of

ot
so-

t

4,
f

-

g

5052 PRE 62D. A. ANDERSON AND I. W. STEWART
be noted that the decay rate given in~4.16! is depth depen-
dent; the larger the depth, the longer the time required for
director to relax back from the perturbed state to the equi
rium state.

B. Nonlinear stability

We now consider the stability of thep/2 solution of the
fully nonlinear equation~4.4!. If, as before, we restrict the
initial profile of the perturbationw0(z) to be non-negative
and to lie in the function spaceH1, we are able by means o
the relevant comparison principle to boundw(z,t) below by
zero. In order to apply the methods introduced in the cu
case in Secs. III B and III C to show that the zero state w
nonlinearly stable to thep/2 state in Eq.~4.1!, we are re-
quired to obtain a supersolution on our perturbation on so
interval for T, for example@0,T8#, satisfying

w̄T5w̄ZZ2kw̄,

w̄~Z,0!5Cw0~Z!, ~4.21!

wherek is a positive constant determined from the para
eters of the problem andC is a positive constant to be chose
later. On obtaining a supersolution satisfying Eq.~4.21!, it
follows from the definition of a supersolution given in E
~3.2! that we then have the differential inequality

w̄T5w̄ZZ2kw̄>w̄ZZ1 f ~w̄!, ~4.22!

which enables us to apply the comparison techniques in
duced above and therefore show that the perturbation de
in time and thus thep/2 equilibrium state to Eq.~4.1! is
stable. To obtain a bound of the form of Eq.~4.22! we must
first boundf (w) so that

f ~w!<2kw, ~4.23!

for a suitable constantk.0.
We now consider the restrictions on the parametersA and

B given in Eq. ~2.22! so that inequality~4.23! and hence

TABLE III. Regions of E.0 for which we have stability for
finite samples whereE6

c are given by Eq.~4.20!, «a is the dielectric
anisotropy of the liquid crystal, andP is the spontaneous polariza
tion.

P
«a 1 2

1 method fails E2,E,E1

2 E.E1 E.E1

TABLE IV. Regions of E,0 ~E,0 corresponds to reversin
the field! for which we have stability for finite samples whereE6

c

are given by Eq.~4.20!; «a andP are as in Table III.

P
«a 1 2

1 E2,E,E1 method fails
2 E,E2 E,E2
e
-

ic
s

e

-

o-
ys

~4.22! hold. We must obtain an intervalI 5@0,wmax# within
which the maximum magnitude of the perturbation must
such that ~4.23! holds. Following the nonlinear stability
analysis in the cubic case, we now letwc(z,t) be the solution
to Eqs.~4.4! and ~4.5! such that

wc~z,0!5cw0~z!, ~4.24!

where c is some positive constant. The nonlinearity to
considered here is

f ~w!5A sin~w!cos~w!1B sin~w!. ~4.25!

Thus if wmax exists it is possible to choosec small enough so
that for some numberw*

cw0~z!<w* ,wmax; ~4.26!

then we can apply the arguments introduced in Secs. I
and III C to show data collapse. However, if there does
exist an intervalI such thatf (w) is negative then we are
unable to apply the above argument and cannot draw
conclusions about the stability of thep/2 state.

We now consider the behavior off (w). First we note that
f (0)50. Thus an immediate restriction onf (f) is that its
derivative, at zero, must decrease, that is, we require tha

f 8~0!5A1B,0. ~4.27!

This restriction is exactly that obtained in the linear stabil
analysis above for the infinite case. The critical fie
strengths~and regions of stability! are therefore identical to
those obtained in Eq.~4.13! ~see Tables I and II!. We see,
from Eq. ~4.25!, that f (w) is equal to zero if and only if

w5H 0

arccosS 2
B

AD , UBAU<1

p.

~4.28!

Thus if uB/Au>1, f (w) has only two roots, namely, 0 andp.
However if uB/Au,1, f (w) has three roots, as displayed
Eq. ~4.28!. Hence, if A and B satisfy Eq. ~4.27!, we are
guaranteed the existence of an intervalI 5@0,wmax) such that
~4.23! holds. Thus for a perturbation with a given value
wmax the maximum valuekmax of k can be found by solving
the equality part in~4.23!, which leads to

kmax5
2 f ~wmax!

wmax
. ~4.29!

However, Eq.~4.29! is a transcendental equation and cann
be solved analytically. We are nonetheless guaranteed a
lution to ~4.29! if we choosewmax, small enough. The righ
hand side of Eq.~4.29! is an even function inwmax and we
therefore need only consider positive values ofwmax. Hence
there must exist a constantk<kmax, which depends upon the
constantsA, B, andwmax, such that the solution to Eq.~4.21!
is a supersolution. From the qualitative features of Fig.
wmax can be lowered or raised, depending on the values oA
andB.
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Case (i): Infinite domain

As in the cubic case on the infinite domain, the solution
Eq. ~4.21! is given by

w̄~Z,T!5
e2kT

A4pT
E

2`

`

expS 2~Z2y!2

4T DCw0~y!dy,

~4.30!

which satisfies

w̄~Z,0!5Cw0~Z!>cw0~Z!,

providedC>c. It therefore follows, by applying the com
parison principle for infinite domains, that

wc~Z,T!<w̄, ~4.31!

wherew̄ is given in Eq.~4.30!. Having obtained this bound i
now follows, exactly as in the cubic case in Sec. III B, that
the infinite case theL2 norm and thus the solution itse
decrease in time; therefore thep/2 state is nonlinearly stabl
for initial perturbations inL2 satisfying the inequality~4.23!.

Case (ii): Finite domain

For the finite interval caseD5@0,d̄#, where we have re-
scaled using Eqs.~2.24! and~2.23!, the solution to Eq.~4.4!
is given by

w̄~Z,T!5exp~2kT! (
n51

`

An sinS npZ

d̄
D expF2S np

d̄
D 2

TG ,

~4.32!

where theAn are as given in Eq.~3.60! with w0 playing the
role of u0 . Assuming thatwc(Z,T) vanishes atz50, d̄ for
t>0, we also have that

w̄~Z,0!5Cw0~Z!>cw0~Z!5wc~Z,0!. ~4.33!

Hence it follows, from the comparison principle on a fini
domain, that

FIG. 4. Qualitative plots of Eq.~4.29! showingkmax for a given
maximum magnitudewmax of the perturbationw(z,t) for the signs
of A andB displayed above.
o

wc~T!<exp~2kT! (
n51

`

An sinS npZ

d̄
D expF2S np

d̄
D 2

TG ,

~4.34!

and thus, using a similar argument to that used previousl
the finite cubic case in Sec. III C, we can uniformly bou
each of theAn given by Eq.~3.60!. Thus for stability we
require

k1S np

d̄
D 2

.0, ~4.35!

which, sincek is positive, is always the case. It therefo
follows that if A andB satisfy Eq.~4.27! then solutions cor-
responding to small enough initial data collapse to thep/2
state. Note here that, similar to the linear analysis, the res
tion ~4.35! depends upon the rescaled depthd̄ of the sample.
It follows that the bounds on the relaxation time are de
dependent, as can be seen from~4.34!.

V. DISCUSSION

Restrictions for the decay of a non-negative perturbat
w(z,t)PH1 initially applied to a constant equilibrium solu
tion of the dynamic equation~2.21! ~on both infinite and
finite domains! were considered. This dynamic equation go
erns the director reorientation within a sample of ferroel
tric smectic-C liquid crystal, where the static field is applie
parallel to the smectic planes. Theoretical critical fie
strengths~related to the stability of perturbations!, which de-
pend upon the physical parameters of the problem, were
obtained. Having obtained these critical field strengths
then, for certain values of these parameters, obtained ra
of the applied static field for which, on both finite and infi
nite domains, linear and nonlinear stability are guarante
Upper bound estimates upon the relaxation time of the dir
tor were also obtained for given initial maximum magnitud
of the perturbation.

In Sec. III B we employed the comparison techniques
troduced in Sec. III A to establish, as considered by Flo
@4#, the stability of certain solutions to a reaction-diffusio
equation involving a cubic nonlinearity on an infinite d
main. This stability argument was then adapted in Sec. I
for application to solutions on a finite interval.

Finally, in Sec. IV a perturbation method was introduc
to consider the stability of thep/2 equilibrium state of the
dynamic equation~2.21!, which governs the orientation o
the director when the static electric field is applied paralle
the layers. The techniques used to prove stability for
cubic reaction-diffusion equation in Secs. III B and III
were then applied to the linearized and fully nonlinear d
namic perturbation equation. However, unlike for the cu
cases discussed in Sec. III, qualitative information was
tained on the parameters of the liquid crystal for which s
bility holds; critical field strengths and ranges of the sta
electric field within which linear and nonlinear stability ho
were found. For the ranges of the parameters for which
bility holds, upper bound estimates were obtained on
characteristic time taken for the director to relax back to
unperturbed state. It is possible to obtain information on
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TABLE V. Characteristic timest, which are all positive, for the problems discussed in Sec. IV@compare
with Eqs.~4.11!, ~4.16!, ~4.30!, and~4.35!#. l5 is the positive viscosity coefficient discussed in the text,B3

is a positive elastic constant, andd is the original sample depth; the field dependent contributions
provided byA1B5E2«a«0 sin2(u)1PE andk, as introduced in Sec. IV, subject toE satisfying the stability
conditions in Tables I–IV.
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usual characteristic timet for the various problems consid
ered. From Eqs.~4.11! and ~2.23! we find that t for the
relaxation of the director in the infinite linear case is giv
by t`522l5 /(A1B)522l5 /@E2«a«0 sin2(u)1PE# ~no-
tice thatA1B is necessarily negative in the infinite doma
case: see Secs. III and IV for more details!. Similar results,
which are displayed in Table V whered is the original
sample depth, can also be found by considering Eqs.~4.16!,
~4.30!, and ~4.35!. The subscriptn in the finite cases indi-
cates the value oft relating to thenth mode in the corre-
sponding series solution. The first eigenmode relates to
longest characteristic time~this is easily seen by lettingn
become large in either of the two finite case characteri
times in Table V!. It therefore follows thatt1 is the most
influential.

Table V gives an indication of how long it takes for th
director to relax back to the equilibriumf5p/2 of Eq.~4.1!:
the larger the value oft, the longer the time taken for th
director to equilibrate. Since, in the finite cases, it is the fi
eigenmode that yields the largest characteristic time, it
lows thatt1 is indicative of the time taken for the director t
relax.

The characteristic times for the linear and the nonlin
analysis are analogous to each other: although there i
depth dependence in the infinite cases~as is to be expected!
the sample depth and the eigenvalues play a role in the fi
cases. In both the linear and nonlinear analysist` may be
obtained by taking the limitd→` in each of the correspond
ing finite case characteristic times. A simple calculation
veals that in both cases~finite and infinite! t1 increases
monotonically to the correspondingt` as the sample depthd
~or d̄! is increased. Thus the time taken for the director
relax back to its equilibrium state from its perturbed state
increased as the sample depthd ~or d̄! increases. Similarly,
on taking the limit close tod'0 in each of the finite case
characteristic times, we find that as the sample depth is
creasedt approaches zero. Hence to minimize the time tak
for a perturbed sample to return to its unperturbed state
original sample depthd should be made as small as possib

It is not, however, only the sample depth that plays a r
in the magnitude of the characteristic times. In both the
ear and nonlinear analysis it can be seen that the magnit
of electric field dependent terms (A1B) and k @which is a
function of (A1B)# also influence the characteristic time.
the electric field is close to zero orEc , given by Eq.~4.13!,
we see from Eq.~4.12! that if (A1B) is small then the
characteristic time becomes large. Note also that in the
nite case the elastic constantB3 does not appear. This is no
he

ic

t
l-

r
no

ite

-

o
s

e-
n
e

.
e
-
es

fi-

unexpected as this elastic constant is absorbed, via resca
to the spatial variableZ and thus it cannot enter the chara
teristic times, as there is no boundary in the infinite ca
This is certainly the case in other problems involving infin
domains where solutions are considered in smectic-C or
smectic-C* liquid crystals, where it is known from exac
traveling wave solutions that the wave speed is independ
of the elastic constants@16,20#.

There are only a few known results for characteris
times for ferroelectric smectic-C samples arranged as dis
cussed in the above problem. For example, Abdulhal
Moddel, and Clark@@26#, p. 823# discuss a characteristi
elastic time,

te5
hf

q2Ks
, ~5.1!

wherehf is a typical smectic viscosity,Ks is a smectic con-
stant, andq is a typical wave number: in finite domainsq can
simply be considered as a ‘‘first’’ wave numberq5p/L
whereL is the sample depth. Numerical results are also giv
in @26#. In the finite domain cases in Table V,t1 is of a
similar form except for the (A1B)d2 andkd2 contributions:
these additional terms arise from the physical parameter
the sample being smectic-C rather than smectic-A. The re-
sults presented here are therefore consistent with those
ticipated by Abdulhalimet al. @26#.

Also, when the smectic tilt angleu50 ~see Fig. 1! the
sample becomes smectic-A type, for which there are recen
results by Shalaginov, Hazelwood, and Sluckin@27# for vari-
ous types of relaxation phenomena. These results, altho
for smectic-A, can be compared with both the finite doma
linear and nonlinear cases outlined in Table V. From@27#,
there is a typical characteristic timetv given by a similar
form to ~5.1!, namely,

tv5
h3L2

4p2K
, ~5.2!

L being the sample depth,h3 a viscosity, andK an elastic
constant: a typical value fortv is around 1022 s @27#. ~In
liquid crystals characteristic times are frequently prop
tional to the ratio of a viscosity divided by an elastic consta
@9,28#.! Clearly, the expression in Eq.~5.2! bears some re-
semblance to the results fortn in Table V, whered, B3 , and
2l5 play the roles ofL, K, andh3 . The factor of 4 appearing
in the denominator oftv occurs because the authors in@27#
consider the second mode in their analysis when looking
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the initialization of chevrons. When such terms asA
1B)d2 and kd2 are ignored, for example, when th
smectic-C sample is close to smectic-A ~i.e., u'0! then the
results in@26,27# can also be utilized for a comparison wi
the results presented here, bearing in mind that these au
employ the analog oft2 . The characteristic times fort1 in
Table V for ferroelectric smectic-C samples ought to col
lapse to those for smectic-A ~with slightly different notation!
when the smectic-C contributions are neglected. These r
sults for ferroelectric smectic-C liquid crystals are therefore
expected to be natural extensions to results for smectic-A in
special cases, the characteristic times being modified acc
ing to the forms indicated in Table V.

It should also be possible to apply the methods used
Sec. IV to other dynamic equations that appear in liq
crystal theory. In particular, it may be possible to obta
information on the stability of some of the equilibrium stat
t
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that arise when a sample of smectic-C or smectic-C* liquid
crystal has a static electric field applied at an angle to
smectic layers.

Equations similar to those discussed here occur elsew
@16,20# and other additional sinusoidal terms may be
cluded in the governing equation, similar to those that ar
~in a different context! in the results contained in@26#. It
should also be mentioned that Stewart and Faulkner@29#
have obtained stability results for nonconstant travel
waves in nematic liquid crystals on infinite domains arisi
from a cubic equation similar to Eq.~3.8!. Work on this and
related areas requires a different analysis and is currentl
progress by the authors.
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